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The deconvolution of the interatomic vector set (the ideal Patterson function)

with the superposition technique is not complete because of the vector overlaps:

multiple images and false peaks usually exist in the superposition map. Here, a

new method for the deconvolution of the interatomic vector set is presented.

This method involves constructing a table termed the ‘convolution table’ from

vectors in a superposition map and then sorting the table so that vectors

belonging to different images are separated, and thus the overlaps are naturally

solved. This method does not use the symmetry information.

1. Introduction

The Patterson function P(r) is the convolution of the electron density

function �(r) with its inverse �(�r). Assuming that �(r) is a set of N

atomic vectors, then P(r) is a set of N2 interatomic vectors, or N

shifted and superposed copies (called images) of �(r). Patterson

approaches are devised to deconvolute P(r) to obtain a single image.

Superposition (Wrinch, 1939; Buerger, 1959) is a basic technique for

Patterson interpretation. However, a single image can rarely be

obtained by a superposition because of the overlapping problems: the

superposition map usually contains multiple images and many false

peaks. The problem of multiple images has been extensively analyzed

(Simonov, 1965; Germain & Woolfson, 1966; Kuzmin et al., 1973).

Overlapping problems are usually more serious for higher-symmetry

crystals and symmetry analysis of interatomic vectors plays an

important role in most Patterson analyses (Harker, 1936; Mighell &

Jacobson, 1963; Borisov, 1965; Simpson et al., 1965; Ilyukhin et al.,

1972; Lenstra & Schoone, 1973; Tollin, 1975; Luger & Fuchs, 1986;

Richardson & Jacobson, 1987; Sheldrick, 1991; Pavelčı́k, 1994; Burla

et al., 2006). Here we present a general method to solve the over-

lapping problems without using the symmetry information.

2. The convolution-table method

If we use { } to denote a set, then �(r) = {ri} and P(r) = {rij} (i, j = 1,

2, . . . , N), where ri represents the ith atomic vector and rij = ri � rj is

an interatomic vector. As a set of images, P(r) = {I1, I2, . . . , IN} with

image Ii = {ri1, ri2, . . . , riN}, or P(r) = {I�1, I�2, . . . , I�N}, with I�i =

{r1i, r2i, . . . , rNi}. All these images are connected at the origin. The

superposition map S(r) can be defined as the intersection of vector set

P(r) and its shift P(r + u),

SðrÞju ¼ PðrÞ \ Pðrþ uÞ ¼ frijg \ frij þ ug; ð1Þ

where the shift vector u is an interatomic vector in P(r), and the

intensity of the peak in the superposition map takes the minimum of

the two superposed peaks. Similarly, a superposition with multiple

shifts is defined as the intersection of P(r) and its multiple shifts

P(r + u1), P(r + u2) etc. Without overlaps among normally unrelated

vectors, a superposition map contains two images, e.g. S(r)|r23 =

{I2, I�3}. Overlaps may be classified into two types: (1) two or more

vectors in P(r) coincide, for example, r23 = r41, and (2) a vector

coincides with the sum of two other vectors, for example, r56 = r71 +

r23. The first type of overlap results in extra images if they are used as

the shift vector (Buerger, 1959; Kuzmin et al., 1973; Pavelčı́k, 1994). If

u = r23 = r41, then a map of four images is obtained: S(r)|r23 = {I2, I�3,

I4, I�1}. The second type of overlap results in extra peaks (false

peaks) if one of the involved vectors is used as the shift vector. For

example, if u = r56 and r56 = r71 + r23, which implies that r17 + r56 = r23,

r32 + r56 = r71, r37 + r56 = r21 and r12 + r56 = r73, then four extra peaks

{r23, r71, r21, r73} appear because they belong to both P(r + r56) and

P(r) [equation (1)], and S(r)|r56 = {I5, I�6, r71, r23, r73, r21}. If r23 = r41,

r56 = r71 + r23 and u = r23 then both types of overlaps are involved, and

the superposition map contains four images and four false peaks:

S(r)|r23 = {I2, I�3, I4, I�1, r56, r57, r16, r17}.

The interatomic vector set P(r) can be completely deconvoluted by

the following procedure:

(a) Obtain a superposition map S(r)|u, which contains one or

several complete images and some false peaks.

(b) Use the vectors (peaks) in S(r)|u = {vk} (k = 1, 2, . . . , m) to

construct an m�m convolution table: if vpq = vp� vq (p, q = 1, 2, . . . ,

m) is an interatomic vector, i.e. a peak of P(r), then the corresponding

table element Xpq takes the value one, otherwise, zero. Each row

represents a consecutive superposition map with two shifts (first u

and then �vk for the kth row). The number of ones in the row is the

number of peaks in the superposition. The diagonal vectors are origin

vectors, and hence the items Xkk are all ones. Furthermore, rows

corresponding to vk = 0 and vk = u are all ones.

(c) Sort the convolution table. If vectors vk1, vk2, . . . , vkN construct

an image Ik, then the vectors generated by their convolution construct

the entire vector set P(r), and in the convolution table they form an N

� N all-one square domain if they are put next to each other. By

definition, this is the largest all-one square domain, and the vectors of

the domain are, therefore, from a single image. The following is a

simple algorithm to sort the convolution table to decompose the

superposition map S(r)|u. We define (1) the product of row p and row

q as a new row (product row), whose element is XpkXqk (k = 1, 2, . . . ,

m), and (2) the rank of a row as the number of ones in the row. Row

vk = 0 and row vk = u are common to all images so we do not consider

them. Start with row k1, find among the rest a row that has the

highest-ranked product with row k1, and record the product row.



Then find the third row that has the highest-ranked product with the

product row, and update the product row. Repeat this till the rank of

the product row is equal to the number of rows that the product row

is generated from. This final product row represents an all-one square

domain in the convolution table, and it is largely determined by the

starting row k1. By starting from row k2, k3, . . . , km, we can find all

representative product rows in the same way. Among all these

product rows, those (usually several) having the highest rank deter-

mine the largest all-one domains and each of them represents a single

image. The number of different highest-ranked product rows is the

number of images contained in superposition map S(r)|u. The

convolution table can now be reordered so that vectors belonging to

different images are grouped together, and multiple images and false

peaks can be easily recognized.

3. An example

Fig. 1 shows the unit cell of a two-dimensional structure with 12 equal

atoms and symmetry P2mg, which was used by Simpson et al. (1965)

for illustrating the symmetry-minimum-function method. Fig. 2(a) is

the Patterson function generated by Fourier transforms. It has 52

non-origin peaks: four are single (smallest or weakest peaks) and all

others are two-to-fourfold overlapped. The circled peak (a twofold

overlap) in Fig. 2(a) is used as a shift vector to obtain the super-

position map (Fig. 2b). There are 26 peaks in Fig. 2(b) and they are

labeled as a, b, . . . , z in decreasing order of intensity. Fig. 2(c) shows

the convolution table constructed from all 26 vectors, and Fig. 2(d ) is

the sorted convolution table. The top-left all-one domain has 12

vectors {a, u, j, d, i, g, y, b, n, q, k, m}, which form exactly a single
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Figure 2
(a) The Patterson function of the example in Fig. 1. (b) The superposition map with the shift vector circled in (a). (c) The unsorted and (d ) the sorted convolution table. The
12 vectors in the top-left box of (d ) form a single image [shown by solid lines in (b)]; vectors a, u, d, g and the eight vectors in the second box form another single image
[dotted lines in (b)]. There are six false peaks: r, l, t, x, o and w.

Figure 1
The unit cell of a two-dimensional structure with symmetry P2mg (from Simpson et
al., 1965).



image and are shown by solid lines in Fig. 2(b). By examining the

sorted table, one can easily find that vectors a, u, d and g in the top-

left boxed domain and the eight vectors in the second boxed domain

construct another 12-atom single image {a, u, d, g, p, e, f, c, s, v, z, h},

which is shown by dotted lines in Fig. 2(b). These two images share a

substructure {a, u, d, g}. Peaks r, l, t, x, o and w are false peaks. The

Patterson map is thus completely deconvoluted without using the

symmetry information. Two-dimensional model structures of

different symmetries and with equal or non-equal atoms have been

successfully analyzed with this method.

The convolution-table method may be used to analyze small

structures or large structures containing a small number of heavy

atoms. Systematic applications of this method to real three-

dimensional crystals are in progress.
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